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Abstract– This report details the design and 
implementation of an N-way superscalar out-of-order 
processor based on the RISC-V instruction set 
architecture. The processor features early branch 
resolution, early tag broadcast, a tournament branch 
predictor with G-share and a per-PC local history 
predictor, a 4-way associative data cache, and a 
direct-mapped instruction cache with 10-line 
prefetching. Our implementation achieves significant 
performance improvements over the 5-stage in-order 
pipeline with an average CPI of approximately 1.661 
and a clock period of 12.75ns. This report outlines the 
architecture, discusses the effectiveness of design 
decisions, evaluates performance metrics, and reflects 
on project management, providing a comprehensive 
overview of the development process and outcomes. 
 

I.​  INTRODUCTION 
 
Modern computing demands high-performance 
processors capable of executing complex workloads 
efficiently. Out-of-order execution, which allows 
instructions to be processed as their operands become 
available rather than strictly in program order, has 
become a cornerstone of advanced processor designs. 
This project aimed to design and implement an 
out-of-order RISC-V processor, drawing inspiration 
from MIPS R10K architecture. 
  
 

II. DESIGN OVERVIEW 
 
We have designed an out-of-order N-way superscalar 
R10K-style processor, with advanced features to 
improve performance such as a tournament branch 
predictor, instruction prefetching, 4-way set associative 
data cache, early branch resolution, early tag broadcast, a 
branch target buffer, and a load buffer-store queue with 
internal forwarding. We feature a high-level overview of 
our processor data flow in Figure 1. 
 

A. Fetch & Decode Stage 
 

Our fetch stage consists of two modules – the instruction 
fetch module and the instruction cache (Icache). Using 
the current PC, instructions are fetched from memory 
and stored in the instruction cache for future reference. 
Decoding annotates these instructions using two 
additional modules, the branch predictor and the branch 
target buffer. 
 
Instruction Fetch 

Our fetch module is responsible for retrieving 
instructions from memory by tracking the current 
Program Counter (PC) and calculating the next PC. For 
our N-way superscalar design, we fetch N instructions 
(or one cache line) per cycle whenever possible.  



 
 

 
Figure 1. High-Level Overview of Our Processor  

 
Resultantly, the fetch module includes an array of N 

decoders which help decode N instructions in parallel to 
enable superscalar execution. Because our fetch module 
does not lie upon the critical path, all instruction 
decoding occurs within it prior to dispatch. 

On the final processor, our fetch width was limited 
by the throughput of the Instruction Cache. Our fetch 
unit currently fetches two 32-bit instructions at once (64 
bits). For simplified branch handling, only one branch 
instruction can be dispatched at a time, and it takes up 
the full width in the pipeline.   

If the fetch module encounters a branch, it will 
signal the branch stack to save a checkpoint of current 
state, and annotate the instruction with a corresponding 
branch ID. If the branch is predicted to be taken, and an 
address is contained in the BTB, it will jump to the target 
address. Otherwise, the PC will advance by 4 * (number 
of instructions fetched).  
 
Instruction Cache  

The instruction cache (Icache) acts as the interface 
between the fetch module and main memory, storing 
recently requested instructions for lower latency. Our 

Icache is direct-mapped with 32 8-byte lines and 
non-blocking.  While blocking on a miss, the Icache will 
continuously prefetch up to 10 lines of instructions from 
memory to improve latency for future instruction 
fetches. Icache memory accesses will stall if the Dcache 
requests memory. 

 
Branch Predictor 

Our branch predictor module implements a hybrid 
predictor scheme that combines both Gshare and local 
history techniques, with arbitration handled by a 
tournament predictor. The module receives at most one 
branch instruction per cycle from the fetch-and-decode 
stage for prediction.  

The Gshare predictor consists of a global branch 
history register (BHR) implemented as a 8-bit FIFO shift 
register which is XORed with the PC to index into a 256 
line pattern history table (PHT). Each entry is a 2-bit 
saturating counter.  

Our local predictor consists of two components – a 
256-lines local history table, with each entry storing an 
8-bit history pattern specific to a given PC, and a 



 
 

corresponding local pattern history table with 256 entries 
outputs a 2-bit counter to generate predictions. 

The tournament predictor is a 256 entry table, 
indexed by a subset of the PC and mapped to a 
prediction table which decides which prediction method 
to use based on a 2-bit saturating counter.  

On branch resolution, both the Gshare and local 
predictors are updated,  ensuring correct state at all 
times, obviating the need for misprediction recovery. If 
both the Gshare and local predictors predict the same, 
then the tournament predictor is not updated. However if 
they differed, the tournament predictor will update to 
reflect bias towards the correct predictor.  
 
Branch Target Buffer 

Our branch target buffer (BTB) serves as a cache for 
target addresses. When a branch instruction has been 
fetched and decoded, it is sent to the BTB module to 
provide quick access to the predicted target address, 
allowing instruction fetching to continue without waiting 
for branch resolution. Our BTB is implemented as a 
16-line fully associative cache with a FIFO-like 
replacement policy that updates and evicts only on 
branch resolution in the Complete Stage. 
 

B. Dispatch Stage 
 
The dispatch stage is a critical component in an 
out-of-order processor pipeline and serves as the bridge 
between in-order front-end stages (fetch/decode) with 
the out-of-order execution backend. Our dispatch stage 
processes incoming instructions by first performing 
register renaming in the map table before sending off the 
instructions to the reservation stations (RS), reorder 
buffer (ROB), store queue (SQ) and branch stack all in 
the same cycle.  
 
Dispatch 

The roles of our dispatch module are four-fold: (1) It 
implements register renaming to eliminate false 
dependencies between instructions by using a priority 
selector to allocate available physical registers which are 
tracked in the Map Table and Free List. (2) It determines 
the appropriate functional unit for each instruction and 

assigns appropriate metadata at the point of dispatch. (3) 
It tags instructions with the appropriate branch masks to 
enable misprediction handling. (4) To handle pipeline 
stalls, the dispatch module monitors the availability of 
the RS, ROB and SQ at all times and generates 
back-pressure when needed.  

 
Branch Stack 

The branch stack manages multiple architectural 
state checkpoints that enable the processor to recover 
from branch mispredictions efficiently. We 
implemented the branch stack as the main driver for 
consistency for Early Branch Resolution (EBR). At its 
core, the branch stack consists of three main 
components – the Map Table, Checkpoint Storage 
Array, and Free List.  

Our processor maintains 32 architected registers 
and 64 physical registers which are tracked by the Map 
Table through logical-physical register mapping as 
well as the Free List, which are passed into the branch 
stack from the dispatch module.  

The Checkpoint Storage Array saves the current 
architectural state (both the Map Table and Free List) 
at the point when a branch enters the pipeline. This 
allows for quick misprediction recovery by restoring 
the processor state to the appropriate checkpoint.  

At the same time, the branch stack sends out 
branch resolution signals by indicating which 
instructions need to be squashed (on a branch 
mispredict) or which branch IDs need to be removed 
from tracking (on a branch hit). By doing so, the 
branch stack serves as the recovery mechanism that 
makes speculative execution of branches possible.  
 
Reorder Buffer 

The Reorder Buffer has 64 entries and functions as a 
circular buffer that tracks all in-flight instructions from 
dispatch until retirement. The ROB is capable of 
receiving and retiring N instructions per cycle. Each 
instruction is allocated an entry in the ROB at dispatch 
time and these entries maintain execution status and 
necessary metadata.  

The ROB uses head and tail pointers to manage this 
circular structure. New instructions enter at the tail while 



 
 

old instructions are retired from the head pointer on 
commit. On a branch mispredict, the ROB walks through 
all entries and squashes all instructions dependent on 
that branch (tracked using the branch mask) and rolls 
back the tail pointer.  

For store instructions, the ROB works closely with 
the store queue by controlling when stores actually 
update memory through a one bit pop_store signal which 
allows the ROB to retire at most one store instruction per 
cycle.  
 

C. Issue Stage 
 
Reservation Station 

Our reservation station (RS) has 32 entries and is 
implemented as a centralized, content-addressable buffer 
that holds instructions while waiting for their operands 
to become available for issue. The RS receives N valid 
instructions from dispatch and allocates entries to store 
them along with their operand dependency information. 

The RS watches the Common Data Bus (CDB) for 
completing instructions and marks operands supplied by 
these instructions as ready. Instructions with all operands 
ready are marked as executable and exposed to the issue 
module. 
 
Issue 

The issue module serves as an interface between our 
reservation station (RS) and functional units in the 
execute stage. It represents the transition point from the 
in-order front-end to the out-of-order execution engine. 

The issue module achieves parallel selection of 
ready instructions through multiple priority selectors that 
issue ready instructions to their respective functional 
units.  

The issue module will issue as many instructions as 
the functional units can take, and will recycle ones that 
were not selected by the Complete logic. Upon issue, 
store instructions will be sent to the store queue to 
register the destination address and data and will be 
marked ready to retire on the ROB in the next cycle.  

The issue module implements special handling for 
load instructions; Load instructions require all stores that 
are older than it to be marked ready in the store queue 

before issuing, and the oldest load instruction in the RS 
will have priority in order to prevent deadlocks. Upon 
issuing a load instruction, it will compute its address in 
the FU stage and will be sent to the store queue. 
 
Store Queue 

Our store queue (SQ) module has 16 entries and is 
implemented as a circular buffer which manages 
memory store operations and provides store-to-load 
forwarding capabilities. Upon dispatch of store 
instructions, the tail entry is allocated but left empty. 

Upon receiving issuing store instructions, the SQ 
will mark the matching entries ready and record their 
address and data. Upon receiving issuing load 
instructions, the SQ will attempt to forward data from 
the youngest ready entries that are older than the load.  

Forwarding happens at the byte-level such that each 
load byte undergoes independent logic to derive store 
data writing to its specific byte-level address. After the 
forwarding attempt, the load instruction is sent to the 
memunit, communicating which bytes were not 
forwarded and need to be read from memory.  

Finally, upon retirement of a store instruction, the 
SQ will pop the head entry and send the store instruction 
to the memunit to write to memory.  
 

D. Execute Stage 
 
Functional Units 

Our functional units contain 3 general purpose 
ALUs, 2 8-stage multipliers, 1 load ALU, 1 store ALU, 
1 branch ALU, 1 stallable branch ALU, and 1 memunit. 
The general purpose ALUs are used to handle arithmetic 
instructions (e.g. addi), while the specialized ALUs are 
used to calculate branch conditions or memory 
addresses. The branch and stalling branch ALUs resolve 
the addresses for B-type (e.g. beq) and J-type 
instructions (e.g. jalr) respectively. 
 

 
 
 
 
 



 
 

E. Complete Stage 
 
Complete 

The complete module manages how completing 
instructions’ destination registers are propagated 
throughout the processor.  

At the heart of our complete module is a priority 
selector that arbitrates which instructions complete in the 
current cycle. The selector ensures that the process can 
complete up to N instructions per cycle and broadcasts 
their tags on the Common Data Bus (CDB). The 
complete module sends corresponding stall signals to 
FUs and the issue module for instructions that were not 
selected.  

Branch instructions that do not write to a register do 
not need to be placed on the CDB and will always be 
completed, allowing for N+1 completions in the case of 
a full CDB and branch resolution occurring at the same 
cycle. Branch instructions that do write to a register are 
classified separately and must be selected by the CDB in 
order to complete. While these instructions can 
theoretically be stalled by the CDB, we designed the 
module such that branches are located at the lowest 
index of the priority selector input bus and loads on the 
highest index so that the two types will always get 
priority due to the alternating nature of the priority 
selector scheme. 

 Combined with the invariant that there may only be 
one branch instruction being dispatched at a time, this 
satisfies the simplification that only one branch is 
resolved at a time. 
 
Physical Register File 

Our Physical Register File (PRF) has 64 entries and 
supports reading two source registers at a time for each 
reservation station entry. It has N write ports to support 
our N way superscalar complete stage. A crucial 
function of the PRF is its CDB forwarding logic, which 
allows our processor to select between forwarding newly 
computed values from the CDB to the RS or returning 
the stored register value, allowing instructions to receive 
operands as soon as they are computed, even before they 
are written back into the register file. 
 

F. Memory Stage 
 
Memunit Module 

The memunit module serves as an interface between 
the processor’s execution pipeline and the memory 
hierarchy. It manages load and store operations, handles 
store-to-load forwarding and coordinates with the caches 
to enable proper memory ordering while supporting 
speculative execution.  

Our memunit module operates through a four-state 
finite state machine that processes memory operations 
and provides a clean interface to the cache system for 
handling loads and stores with different memory 
addresses and sizes (byte/half/word) while taking into 
account branch squashes and clears.  

When receiving a memory instruction from the 
pipeline, it performs one of three actions: (1) For fully 
forwarded loads, it returns data immediately (2) For 
loads requiring cache access, it issues a read request and 
manages the response from the data cache and (3) For 
stores, it simply sends write requests to the cache. Once 
load data is received from the cache, the memunit 
forwards this data packet to completion and uses a 
ready-valid handshake to accept incoming instruction 
from the store queue.  

For load instructions arriving at the memunit, they 
arrive with the memory address to load from, a bitmap 
indicating which bytes need memory access and partial 
data that is already forwarded from the store queue. 
Using the bitmap, a byte level mask is generated which 
indicates what bytes of data is needed to be merged from 
the cache and the final value is sign extended based on 
the load type before being sent to the completion stage.  
 
Data Cache 

The Data Cache(Dcache) is the interface that sits 
between the memory unit and main memory. In our final 
processor, the Dcache is a 32-line 4-way set associative, 
write-back cache with a true LRU replacement eviction 
policy. The Dcache is parameterized to enable 2k-way set 
associativity. On eviction from our Dcache, the cache 
block is written back into main memory based on the 
dirty bit. 



 
 

In the event of a cache hit, the processor updates the 
LRU (Least Recently Used) bits to reflect the access 
order and modifies the dirty bits of the corresponding 
cache line if the operation is a store, ensuring accurate 
tracking of cache state.  

Conversely, if the access results in a cache miss, 
indicating the data is not present in the cache, the 
processor proceeds to allocate a Miss Status Handling 
Register (MSHR) entry to track the process of fetching 
this miss from memory. The Dcache will repeatedly try 
to request the missed data from memory, then store the 
transaction tag in the MSHR. Upon data arrival, the 
Dcache will clear the MSHR and find the least recently 
used line to evict.  

As our data cache is blocking, it will only accept 
requests after this evict and its potential dirty writeback 
to memory. 
 

G. Writeback Stage 
 
The retire stage represents the final phase in the 
processor pipeline where instructions complete their 
execution. The Reorder Buffer (ROB) governs whether 
an instruction is eligible for commitment, allowing up to 
N instructions at the head of the ROB to be committed in 
a single cycle. The retirement is straightforward: once 
instructions are flagged as having completed execution 
by the ROB, they are eligible for commitment without 
additional constraints. For store instructions, retirement 
is analogous to writing to memory. Therefore, store 
instructions may only retire if the memunit is vacant and 
there is no load instruction being issued.  
 

III. ADVANCED FEATURES 
 
N-way Superscalar 

Our processor was implemented as a parameterized 
N-way superscalar which enables it to dispatch, issue, 
execute, complete and retire up to N instructions per 
cycle. In our final submission, our processor was limited 
to N=2 due to a single read port on the Icache(each line 
stores two instructions). Higher width could have been 
achieved by multibanking the Icache, but we determined 

that the performance increase was not worth the 
development time. 
Instruction Prefetching 

Because the reads from instruction memory occur in 
a regular pattern, latency can be reduced by prefetching 
multiple instruction lines while Icache is blocked upon a 
miss. Upon a miss in the Icache, our processor 
prefetches up to 10 lines of instructions ahead of the 
current PC value. Similar to the Dcache, transaction tags 
for each prefetch access are stored in MSHRs, and 
deallocated once the data is returned by memory. While 
the Icache is servicing hits, no additional lines are 
prefetched. Additionally, all MSHRs are cleared upon a 
branch squash or taken prediction, to invalidate 
prefetches for irrelevant instructions. 
 
Advanced Branch Predictor 

Initially only Gshare was implemented, resulting in a 
lower branch prediction accuracy than expected. In order 
to increase our accuracy a tournament predictor was 
added, as shown by the table “Comparison of different 
Branch Predictor Implementations accuracy”. This 
approach balances the strengths of each method: Gshare, 
which refines the global predictor by blending branch 
PC with global history to reduce aliasing, captures 
correlations across branches effectively, while the local 
predictor excels at identifying branch-specific patterns 
but falters with broader dependencies and requires more 
storage. 

 
Early Tag Broadcast 

Every execution module anticipating completion 
within that cycle submits a request for a slot on the 
Common Data Bus (CDB), which updates on the next 
cycle. With the implementation of ETB, the tags are 
driven combinationally to mark dependent instructions 
ready to issue on the next cycle. On the following clock 
edge, the CDB is updated with its data and intercepts all 
read requests from issuing instructions awakened by the 
early tag broadcast bus and forwards the new data.  
 
Early Branch Resolution  

Our Early Branch Resolution (EBR) implementation 
is centered around the branch stack module, which 



 
 

maintains architectural state checkpoints for speculative 
execution. When a branch instruction is dispatched, the 
branch stack allocates an entry containing a map table 
snapshot, PC information, prediction data, and a branch 
mask indicating dependencies on other speculative 
branches.  

Each branch is assigned a unique branch ID (bid) 
that is used throughout the pipeline to track 
dependencies, with the current set of active branch IDs 
maintained in a global branch mask. This 
implementation supports multiple concurrent speculative 
branches with precise dependency tracking to manage 
nested speculation efficiently. 

When a branch instruction completes execution in 
the ALU, the branch stack immediately processes the 
result without waiting for retirement, comparing the 
actual target address with the predicted one. For correct 
predictions, the branch stack broadcasts a "clear" mask 
to remove branch dependencies from other instructions 
while maintaining speculative state. For mispredictions, 
it generates a "squash" mask, restores the processor state 
to the appropriate checkpoint, and provides the correct 
target PC for instruction fetching.  

This selective recovery mechanism cancels only 
instructions dependent on the mispredicted branch while 
preserving independent speculative execution. The map 
table in each checkpoint is continuously updated with 
register readiness information as instructions complete 
on the Common Data Bus, ensuring accurate state 
restoration during recovery. When a branch that contains 
other branches is squashed, all checkpoints related to the 
nested state are freed. 
 
TUI Debugger 

To aid in debugging the processor pipeline, we 
developed a debugger with a Terminal User Interface 
(TUI) that reads in the generated Value Change Dump 
(VCD) files, and displays the simulated data in a visually 
aesthetic terminal written entirely in Rust. The TUI 
debugger displays the contents of many modules per 
clock cycle and allows for arbitrary signal access.  [See 
Appendix A] 
 

 

IV. EXPERIMENTAL FEATURES 
 
Due to time constraints or adverse performance effects, 
there are some features we implemented that we decided 
not to include in the final design. 
 
Pseudo LRU eviction policy for BTB 
​ The eviction system for the branch target buffer in 
the final system is a FIFO circular queue which works 
on BTB sizes that are powers of 2. For more flexibility, 
we implemented a bit-PLRU policy1 to vary the size of 
the BTB freely. However, we concurrently found that in 
our tests, we were rarely reaching the BTB’s max 
capacity, so the eviction policy was not needed. 
Additionally, our Dcache already had a true LRU policy, 
so this eviction policy was never used anywhere. 
 

V. EVALUATION & TESTING 
 
Systems Integration & Testing  

Our testing strategy involved two major system 
integrations. The first phase focused on validating our 
core pipeline without memory operations. For this test, 
we created a testbench with a simulated fetch stage that 
directly provided instructions to the decode stage, 
deliberately using programs without loads or stores. This 
simplified setup included a basic branch predictor 
(always predicting "not taken") that allowed us to verify 
our branch misprediction handling mechanisms. After 
successfully confirming this functionality, we moved 
forward with designing additional individual modules. 

The second integration phase was significantly more 
complex, incorporating memory operations through 
instruction cache, data cache, and load store queue 
implementations. Despite the challenges, we were able 
to get a correct working processor by Milestone 3. 

We verified the correctness of our processor by 
comparing the register write back order, final memory 
state, and memory writeback order of our processor with 
the corresponding files generated by the correct Project 3 
processor. Our processor passes this verification for all 

1A. Abel, “Automatic Generation of Models of 
Microarchitectures,” Ph.D dissertation, Saarland, 
Germany, 2020. 



 
 

provided test files on all compiler optimizations flags as 
well as on test files we created to test certain behaviors 
(e.g. memory operations near the end of the program). 
 
Performance Evaluation 

We achieved a final clock period of 12.75 ns with 
final critical paths in the Branch Stack (for branch 
resolution) and Store Queue. Pipelining on these 
modules is possible, but due to time constraints, we were 
unable to fully implement this in our final design. 

Our average CPI across all public tests with no 
compiler optimizations is 1.661. This, and all further CPI 
numbers in the report, was calculated by summing the 
total clock cycles and dividing it by the total instructions 
retired in all programs. 
 
Summarized Parameters for Our Final Submission 

[See Appendix A] 
​ These parameters were selected based on the 
performance improvements we saw while testing and 
their effects on synthesis results/critical path length. 
 
CPI across test suite 

[See Appendix B] 
Our CPI varied based upon the particular workload 

tested. The highest CPI occurred on test cases that were 
predominantly branches, as Icache was frequently 
invalidated. Our best CPI was on test cases with repeated 
loop patterns, and independent store instructions that 
could retire in parallel with other execution. 
 
Comparison of Dcache associativity 

Ways CPI Hit % 

2 1.692 93.72% 

4 1.661 94.65% 

8 1.658 94.65% 

16 1.659 94.60% 

​ Past a certain associativity, the Dcache’s hit rate 
does not change significantly. The parameter selected in 
our final submission (4) does have a worse CPI 

compared to an 8-way associative Dcache, but due to the 
LRU policy used for our cache it was not feasible to 
create more associative caches without affecting clock 
period adversely or using different eviction policies. 
 
Comparison of Superscalar Widths  

N CPI % cycles completing N instructions 

2 1.661 13.00% 

3 1.645 3.56% 

4 1.669 0.69% 

5 1.661 0.03% 

Ultimately, our processor has the best performance 
on N=3, though we did not include this in our final 
submission because of time constraints. At larger N 
values we see that the number of cycles where the 
processor takes advantage of the increased width 
decreases significantly, diminishing performance gains. 
 
Comparison of different Branch Predictor Addresses 
accuracy 

[See Appendix D] 
From our analysis on indexing from different parts 

of the branch PC for our local and Gshare PHTs, we 
found the optimal PC address came from indexes [15:8]. 
 
Capacity Utilization of ROB/RS  

ROB RS % full ROB cycles % full RS cycles 

64 8 0.02% 13.54% 

64 16 0.08% 9.82% 

64 32 0.77% 9.29% 

64 64 12.17% 0.01% 

128 64 0% 0% 

[See Appendix E] 
​ We find that with our clock period, our average 
ROB and RS utilization is low for most test cases, 
going up to 49 on test cases with higher percentages of 



 
 

load and multiply instructions. The optimal ROB/RS 
size of 128/64 became a critical path, thus the smaller 
64/32 was selected as the best at our clock period.  
 
Accuracy of Branch Predictor Implementations  

Predictor Scheme Overall  Large tests 

Tournament 0.854 0.917 

Gshare 0.781 0.834 

Local 0.787 0.847 

 
On all test cases, our processor had the highest 

branch predictor accuracy with the tournament style 
predictor, choosing between Gshare and the local 
bimodal predictor. On larger test cases such as Alexnet 
and InsertionSort, the trend followed with the 
tournament predictor having the best branch predictor 
accuracy.  
 
ICache Hit Rate 

[See Appendix F] 
​ The hit rate of the Icache had varying success rates 
across the different programs. Programs with more 
compact instruction footprints such as basic_malloc, 
matrix_mult_rec, and copy exhibited very high hit 
rates. This is expected, as their instruction working 
sets are small enough to remain entirely within the 
instruction cache. 
 
DCache Hit Rate 

[See Appendix G] 
​ The hit rate of the Dcache is relatively high on the 
test cases which run for >10000 instructions, as 
expected. For test cases which perform many different 
accesses to memory, like matrix_mult_rec, the 
capacity of the Dcache becomes a problem. On greater 
associativities, the hit rate for this test remains 
approximately the same. 
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Appendix A: Full Screenshot of TUI Debugger 
 

Parameter Value Parameter Value 

Superscalar Width 2 Dcache Lines  32 

RS Size 32 Dcache Line Size 8 bytes 

ROB Size 64 Dcache Associativity 4-way 

Physical Registers 64 Dcache Total Size 256 bytes 

Branch History Register 8 bits Icache Lines 32 

Store Queue Size 16 Icache Line Size 8 bytes 

ALUs 3 Icache Associativity direct-mapped 

Multiplier FUs 2 Icache Total Size 256 bytes 

Multiplication Stages  8 Load Units 1 

Store Units 1 Branch Units 1 

 
Appendix B: Final Submission Parameters 



 
 

 
Appendix C: Average CPI Across Our Test Suite 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix D: Comparison on the Accuracy of Different Branch Predictor Addresses (% Hit Rate) 
 

 

 Tournament [15:8] Tournament [7:0] Tournament [19:12] Tournament [11:4] 

alexnet 0.913 0.908 0.479 0.921 

backtrack 0.797 0.792 0.623 0.803 

basic_malloc 0.779 0.750 0.555 0.826 

bfs 0.781 0.736 0.558 0.781 

btest1 0.688 0.667 0.667 0.667 

btest2 0.839 0.667 0.667 0.667 

copy_long 0.938 0.938 0.938 0.938 

copy 0.938 0.938 0.938 0.938 

dft 0.820 0.796 0.791 0.836 

evens_long 0.697 0.667 0.667 0.697 

evens 0.697 0.697 0.697 0.697 

fc_forward 0.935 0.935 0.935 0.935 

fib_long 0.929 0.929 0.929 0.929 

fib_rec 0.944 0.880 0.880 0.937 

fib 0.929 0.929 0.929 0.929 

graph 0.895 0.825 0.673 0.910 

insertionsort 0.953 0.945 0.944 0.951 

insertion 0.737 0.548 0.548 0.539 

loop 0.967 0.967 0.967 0.967 

matrix_mult_rec 0.983 0.983 0.971 0.982 

mergesort 0.769 0.640 0.670 0.757 

mult_no_lsq 0.938 0.938 0.938 0.938 

mult_orig 0.941 0.941 0.941 0.941 

outer_product 0.950 0.950 0.943 0.950 

parallel 0.933 0.933 0.933 0.933 

priority_queue 0.847 0.795 0.527 0.851 

quicksort 0.865 0.854 0.814 0.870 

sampler 0.379 0.414 0.379 0.379 

saxpy 0.947 0.947 0.947 0.947 

sort_search 0.882 0.892 0.892 0.882 

Average: 0.854 0.827 0.774 0.843 



 
 

 
 
 

Appendix E: Capacity Utilization of ROB/RS (ROB/RS Capacity Against Number of Cycles) 
 



 
 

 
Appendix F: ICache Hit Rate (%) 

 

 
Appendix G: DCache Hit Rate (%) 


	EECS 470 Final Project Report 

