

EECS 470 Final Project Report
Group 1 - o3o (Out of Order Onion)

Biro Shin
University of Michigan
biroshin@umich.edu

Ibrahim Musaddequr Rahman
University of Michigan

iamr@umich.edu

Joseph Goslak
University of Michigan

jgoslak@umich.edu

Kai Jun Han
University of Michigan

kaijun@umich.edu

Lani Quach
University of Michigan

laniq@umich.edu

Wayne He
University of Michigan

waning@umich.edu

Abstract– This report details the design and
implementation of an N-way superscalar out-of-order
processor based on the RISC-V instruction set
architecture. The processor features early branch
resolution, early tag broadcast, a tournament branch
predictor with G-share and a per-PC local history
predictor, a 4-way associative data cache, and a
direct-mapped instruction cache with 10-line
prefetching. Our implementation achieves significant
performance improvements over the 5-stage in-order
pipeline with an average CPI of approximately 1.661
and a clock period of 12.75ns. This report outlines the
architecture, discusses the effectiveness of design
decisions, evaluates performance metrics, and reflects
on project management, providing a comprehensive
overview of the development process and outcomes.

I.​ INTRODUCTION

Modern computing demands high-performance
processors capable of executing complex workloads
efficiently. Out-of-order execution, which allows
instructions to be processed as their operands become
available rather than strictly in program order, has
become a cornerstone of advanced processor designs.
This project aimed to design and implement an
out-of-order RISC-V processor, drawing inspiration
from MIPS R10K architecture.

II. DESIGN OVERVIEW

We have designed an out-of-order N-way superscalar
R10K-style processor, with advanced features to
improve performance such as a tournament branch
predictor, instruction prefetching, 4-way set associative
data cache, early branch resolution, early tag broadcast, a
branch target buffer, and a load buffer-store queue with
internal forwarding. We feature a high-level overview of
our processor data flow in Figure 1.

A. Fetch & Decode Stage

Our fetch stage consists of two modules – the instruction
fetch module and the instruction cache (Icache). Using
the current PC, instructions are fetched from memory
and stored in the instruction cache for future reference.
Decoding annotates these instructions using two
additional modules, the branch predictor and the branch
target buffer.

Instruction Fetch

Our fetch module is responsible for retrieving
instructions from memory by tracking the current
Program Counter (PC) and calculating the next PC. For
our N-way superscalar design, we fetch N instructions
(or one cache line) per cycle whenever possible.

Figure 1. High-Level Overview of Our Processor

Resultantly, the fetch module includes an array of N

decoders which help decode N instructions in parallel to
enable superscalar execution. Because our fetch module
does not lie upon the critical path, all instruction
decoding occurs within it prior to dispatch.

On the final processor, our fetch width was limited
by the throughput of the Instruction Cache. Our fetch
unit currently fetches two 32-bit instructions at once (64
bits). For simplified branch handling, only one branch
instruction can be dispatched at a time, and it takes up
the full width in the pipeline.

If the fetch module encounters a branch, it will
signal the branch stack to save a checkpoint of current
state, and annotate the instruction with a corresponding
branch ID. If the branch is predicted to be taken, and an
address is contained in the BTB, it will jump to the target
address. Otherwise, the PC will advance by 4 * (number
of instructions fetched).

Instruction Cache

The instruction cache (Icache) acts as the interface
between the fetch module and main memory, storing
recently requested instructions for lower latency. Our

Icache is direct-mapped with 32 8-byte lines and
non-blocking. While blocking on a miss, the Icache will
continuously prefetch up to 10 lines of instructions from
memory to improve latency for future instruction
fetches. Icache memory accesses will stall if the Dcache
requests memory.

Branch Predictor

Our branch predictor module implements a hybrid
predictor scheme that combines both Gshare and local
history techniques, with arbitration handled by a
tournament predictor. The module receives at most one
branch instruction per cycle from the fetch-and-decode
stage for prediction.

The Gshare predictor consists of a global branch
history register (BHR) implemented as a 8-bit FIFO shift
register which is XORed with the PC to index into a 256
line pattern history table (PHT). Each entry is a 2-bit
saturating counter.

Our local predictor consists of two components – a
256-lines local history table, with each entry storing an
8-bit history pattern specific to a given PC, and a

corresponding local pattern history table with 256 entries
outputs a 2-bit counter to generate predictions.

The tournament predictor is a 256 entry table,
indexed by a subset of the PC and mapped to a
prediction table which decides which prediction method
to use based on a 2-bit saturating counter.

On branch resolution, both the Gshare and local
predictors are updated, ensuring correct state at all
times, obviating the need for misprediction recovery. If
both the Gshare and local predictors predict the same,
then the tournament predictor is not updated. However if
they differed, the tournament predictor will update to
reflect bias towards the correct predictor.

Branch Target Buffer

Our branch target buffer (BTB) serves as a cache for
target addresses. When a branch instruction has been
fetched and decoded, it is sent to the BTB module to
provide quick access to the predicted target address,
allowing instruction fetching to continue without waiting
for branch resolution. Our BTB is implemented as a
16-line fully associative cache with a FIFO-like
replacement policy that updates and evicts only on
branch resolution in the Complete Stage.

B. Dispatch Stage

The dispatch stage is a critical component in an
out-of-order processor pipeline and serves as the bridge
between in-order front-end stages (fetch/decode) with
the out-of-order execution backend. Our dispatch stage
processes incoming instructions by first performing
register renaming in the map table before sending off the
instructions to the reservation stations (RS), reorder
buffer (ROB), store queue (SQ) and branch stack all in
the same cycle.

Dispatch

The roles of our dispatch module are four-fold: (1) It
implements register renaming to eliminate false
dependencies between instructions by using a priority
selector to allocate available physical registers which are
tracked in the Map Table and Free List. (2) It determines
the appropriate functional unit for each instruction and

assigns appropriate metadata at the point of dispatch. (3)
It tags instructions with the appropriate branch masks to
enable misprediction handling. (4) To handle pipeline
stalls, the dispatch module monitors the availability of
the RS, ROB and SQ at all times and generates
back-pressure when needed.

Branch Stack

The branch stack manages multiple architectural
state checkpoints that enable the processor to recover
from branch mispredictions efficiently. We
implemented the branch stack as the main driver for
consistency for Early Branch Resolution (EBR). At its
core, the branch stack consists of three main
components – the Map Table, Checkpoint Storage
Array, and Free List.

Our processor maintains 32 architected registers
and 64 physical registers which are tracked by the Map
Table through logical-physical register mapping as
well as the Free List, which are passed into the branch
stack from the dispatch module.

The Checkpoint Storage Array saves the current
architectural state (both the Map Table and Free List)
at the point when a branch enters the pipeline. This
allows for quick misprediction recovery by restoring
the processor state to the appropriate checkpoint.

At the same time, the branch stack sends out
branch resolution signals by indicating which
instructions need to be squashed (on a branch
mispredict) or which branch IDs need to be removed
from tracking (on a branch hit). By doing so, the
branch stack serves as the recovery mechanism that
makes speculative execution of branches possible.

Reorder Buffer

The Reorder Buffer has 64 entries and functions as a
circular buffer that tracks all in-flight instructions from
dispatch until retirement. The ROB is capable of
receiving and retiring N instructions per cycle. Each
instruction is allocated an entry in the ROB at dispatch
time and these entries maintain execution status and
necessary metadata.

The ROB uses head and tail pointers to manage this
circular structure. New instructions enter at the tail while

old instructions are retired from the head pointer on
commit. On a branch mispredict, the ROB walks through
all entries and squashes all instructions dependent on
that branch (tracked using the branch mask) and rolls
back the tail pointer.

For store instructions, the ROB works closely with
the store queue by controlling when stores actually
update memory through a one bit pop_store signal which
allows the ROB to retire at most one store instruction per
cycle.

C. Issue Stage

Reservation Station

Our reservation station (RS) has 32 entries and is
implemented as a centralized, content-addressable buffer
that holds instructions while waiting for their operands
to become available for issue. The RS receives N valid
instructions from dispatch and allocates entries to store
them along with their operand dependency information.

The RS watches the Common Data Bus (CDB) for
completing instructions and marks operands supplied by
these instructions as ready. Instructions with all operands
ready are marked as executable and exposed to the issue
module.

Issue

The issue module serves as an interface between our
reservation station (RS) and functional units in the
execute stage. It represents the transition point from the
in-order front-end to the out-of-order execution engine.

The issue module achieves parallel selection of
ready instructions through multiple priority selectors that
issue ready instructions to their respective functional
units.

The issue module will issue as many instructions as
the functional units can take, and will recycle ones that
were not selected by the Complete logic. Upon issue,
store instructions will be sent to the store queue to
register the destination address and data and will be
marked ready to retire on the ROB in the next cycle.

The issue module implements special handling for
load instructions; Load instructions require all stores that
are older than it to be marked ready in the store queue

before issuing, and the oldest load instruction in the RS
will have priority in order to prevent deadlocks. Upon
issuing a load instruction, it will compute its address in
the FU stage and will be sent to the store queue.

Store Queue

Our store queue (SQ) module has 16 entries and is
implemented as a circular buffer which manages
memory store operations and provides store-to-load
forwarding capabilities. Upon dispatch of store
instructions, the tail entry is allocated but left empty.

Upon receiving issuing store instructions, the SQ
will mark the matching entries ready and record their
address and data. Upon receiving issuing load
instructions, the SQ will attempt to forward data from
the youngest ready entries that are older than the load.

Forwarding happens at the byte-level such that each
load byte undergoes independent logic to derive store
data writing to its specific byte-level address. After the
forwarding attempt, the load instruction is sent to the
memunit, communicating which bytes were not
forwarded and need to be read from memory.

Finally, upon retirement of a store instruction, the
SQ will pop the head entry and send the store instruction
to the memunit to write to memory.

D. Execute Stage

Functional Units

Our functional units contain 3 general purpose
ALUs, 2 8-stage multipliers, 1 load ALU, 1 store ALU,
1 branch ALU, 1 stallable branch ALU, and 1 memunit.
The general purpose ALUs are used to handle arithmetic
instructions (e.g. addi), while the specialized ALUs are
used to calculate branch conditions or memory
addresses. The branch and stalling branch ALUs resolve
the addresses for B-type (e.g. beq) and J-type
instructions (e.g. jalr) respectively.

E. Complete Stage

Complete

The complete module manages how completing
instructions’ destination registers are propagated
throughout the processor.

At the heart of our complete module is a priority
selector that arbitrates which instructions complete in the
current cycle. The selector ensures that the process can
complete up to N instructions per cycle and broadcasts
their tags on the Common Data Bus (CDB). The
complete module sends corresponding stall signals to
FUs and the issue module for instructions that were not
selected.

Branch instructions that do not write to a register do
not need to be placed on the CDB and will always be
completed, allowing for N+1 completions in the case of
a full CDB and branch resolution occurring at the same
cycle. Branch instructions that do write to a register are
classified separately and must be selected by the CDB in
order to complete. While these instructions can
theoretically be stalled by the CDB, we designed the
module such that branches are located at the lowest
index of the priority selector input bus and loads on the
highest index so that the two types will always get
priority due to the alternating nature of the priority
selector scheme.

 Combined with the invariant that there may only be
one branch instruction being dispatched at a time, this
satisfies the simplification that only one branch is
resolved at a time.

Physical Register File

Our Physical Register File (PRF) has 64 entries and
supports reading two source registers at a time for each
reservation station entry. It has N write ports to support
our N way superscalar complete stage. A crucial
function of the PRF is its CDB forwarding logic, which
allows our processor to select between forwarding newly
computed values from the CDB to the RS or returning
the stored register value, allowing instructions to receive
operands as soon as they are computed, even before they
are written back into the register file.

F. Memory Stage

Memunit Module

The memunit module serves as an interface between
the processor’s execution pipeline and the memory
hierarchy. It manages load and store operations, handles
store-to-load forwarding and coordinates with the caches
to enable proper memory ordering while supporting
speculative execution.

Our memunit module operates through a four-state
finite state machine that processes memory operations
and provides a clean interface to the cache system for
handling loads and stores with different memory
addresses and sizes (byte/half/word) while taking into
account branch squashes and clears.

When receiving a memory instruction from the
pipeline, it performs one of three actions: (1) For fully
forwarded loads, it returns data immediately (2) For
loads requiring cache access, it issues a read request and
manages the response from the data cache and (3) For
stores, it simply sends write requests to the cache. Once
load data is received from the cache, the memunit
forwards this data packet to completion and uses a
ready-valid handshake to accept incoming instruction
from the store queue.

For load instructions arriving at the memunit, they
arrive with the memory address to load from, a bitmap
indicating which bytes need memory access and partial
data that is already forwarded from the store queue.
Using the bitmap, a byte level mask is generated which
indicates what bytes of data is needed to be merged from
the cache and the final value is sign extended based on
the load type before being sent to the completion stage.

Data Cache

The Data Cache(Dcache) is the interface that sits
between the memory unit and main memory. In our final
processor, the Dcache is a 32-line 4-way set associative,
write-back cache with a true LRU replacement eviction
policy. The Dcache is parameterized to enable 2k-way set
associativity. On eviction from our Dcache, the cache
block is written back into main memory based on the
dirty bit.

In the event of a cache hit, the processor updates the
LRU (Least Recently Used) bits to reflect the access
order and modifies the dirty bits of the corresponding
cache line if the operation is a store, ensuring accurate
tracking of cache state.

Conversely, if the access results in a cache miss,
indicating the data is not present in the cache, the
processor proceeds to allocate a Miss Status Handling
Register (MSHR) entry to track the process of fetching
this miss from memory. The Dcache will repeatedly try
to request the missed data from memory, then store the
transaction tag in the MSHR. Upon data arrival, the
Dcache will clear the MSHR and find the least recently
used line to evict.

As our data cache is blocking, it will only accept
requests after this evict and its potential dirty writeback
to memory.

G. Writeback Stage

The retire stage represents the final phase in the
processor pipeline where instructions complete their
execution. The Reorder Buffer (ROB) governs whether
an instruction is eligible for commitment, allowing up to
N instructions at the head of the ROB to be committed in
a single cycle. The retirement is straightforward: once
instructions are flagged as having completed execution
by the ROB, they are eligible for commitment without
additional constraints. For store instructions, retirement
is analogous to writing to memory. Therefore, store
instructions may only retire if the memunit is vacant and
there is no load instruction being issued.

III. ADVANCED FEATURES

N-way Superscalar

Our processor was implemented as a parameterized
N-way superscalar which enables it to dispatch, issue,
execute, complete and retire up to N instructions per
cycle. In our final submission, our processor was limited
to N=2 due to a single read port on the Icache(each line
stores two instructions). Higher width could have been
achieved by multibanking the Icache, but we determined

that the performance increase was not worth the
development time.
Instruction Prefetching

Because the reads from instruction memory occur in
a regular pattern, latency can be reduced by prefetching
multiple instruction lines while Icache is blocked upon a
miss. Upon a miss in the Icache, our processor
prefetches up to 10 lines of instructions ahead of the
current PC value. Similar to the Dcache, transaction tags
for each prefetch access are stored in MSHRs, and
deallocated once the data is returned by memory. While
the Icache is servicing hits, no additional lines are
prefetched. Additionally, all MSHRs are cleared upon a
branch squash or taken prediction, to invalidate
prefetches for irrelevant instructions.

Advanced Branch Predictor

Initially only Gshare was implemented, resulting in a
lower branch prediction accuracy than expected. In order
to increase our accuracy a tournament predictor was
added, as shown by the table “Comparison of different
Branch Predictor Implementations accuracy”. This
approach balances the strengths of each method: Gshare,
which refines the global predictor by blending branch
PC with global history to reduce aliasing, captures
correlations across branches effectively, while the local
predictor excels at identifying branch-specific patterns
but falters with broader dependencies and requires more
storage.

Early Tag Broadcast

Every execution module anticipating completion
within that cycle submits a request for a slot on the
Common Data Bus (CDB), which updates on the next
cycle. With the implementation of ETB, the tags are
driven combinationally to mark dependent instructions
ready to issue on the next cycle. On the following clock
edge, the CDB is updated with its data and intercepts all
read requests from issuing instructions awakened by the
early tag broadcast bus and forwards the new data.

Early Branch Resolution

Our Early Branch Resolution (EBR) implementation
is centered around the branch stack module, which

maintains architectural state checkpoints for speculative
execution. When a branch instruction is dispatched, the
branch stack allocates an entry containing a map table
snapshot, PC information, prediction data, and a branch
mask indicating dependencies on other speculative
branches.

Each branch is assigned a unique branch ID (bid)
that is used throughout the pipeline to track
dependencies, with the current set of active branch IDs
maintained in a global branch mask. This
implementation supports multiple concurrent speculative
branches with precise dependency tracking to manage
nested speculation efficiently.

When a branch instruction completes execution in
the ALU, the branch stack immediately processes the
result without waiting for retirement, comparing the
actual target address with the predicted one. For correct
predictions, the branch stack broadcasts a "clear" mask
to remove branch dependencies from other instructions
while maintaining speculative state. For mispredictions,
it generates a "squash" mask, restores the processor state
to the appropriate checkpoint, and provides the correct
target PC for instruction fetching.

This selective recovery mechanism cancels only
instructions dependent on the mispredicted branch while
preserving independent speculative execution. The map
table in each checkpoint is continuously updated with
register readiness information as instructions complete
on the Common Data Bus, ensuring accurate state
restoration during recovery. When a branch that contains
other branches is squashed, all checkpoints related to the
nested state are freed.

TUI Debugger

To aid in debugging the processor pipeline, we
developed a debugger with a Terminal User Interface
(TUI) that reads in the generated Value Change Dump
(VCD) files, and displays the simulated data in a visually
aesthetic terminal written entirely in Rust. The TUI
debugger displays the contents of many modules per
clock cycle and allows for arbitrary signal access. [See
Appendix A]

IV. EXPERIMENTAL FEATURES

Due to time constraints or adverse performance effects,
there are some features we implemented that we decided
not to include in the final design.

Pseudo LRU eviction policy for BTB
​ The eviction system for the branch target buffer in
the final system is a FIFO circular queue which works
on BTB sizes that are powers of 2. For more flexibility,
we implemented a bit-PLRU policy1 to vary the size of
the BTB freely. However, we concurrently found that in
our tests, we were rarely reaching the BTB’s max
capacity, so the eviction policy was not needed.
Additionally, our Dcache already had a true LRU policy,
so this eviction policy was never used anywhere.

V. EVALUATION & TESTING

Systems Integration & Testing

Our testing strategy involved two major system
integrations. The first phase focused on validating our
core pipeline without memory operations. For this test,
we created a testbench with a simulated fetch stage that
directly provided instructions to the decode stage,
deliberately using programs without loads or stores. This
simplified setup included a basic branch predictor
(always predicting "not taken") that allowed us to verify
our branch misprediction handling mechanisms. After
successfully confirming this functionality, we moved
forward with designing additional individual modules.

The second integration phase was significantly more
complex, incorporating memory operations through
instruction cache, data cache, and load store queue
implementations. Despite the challenges, we were able
to get a correct working processor by Milestone 3.

We verified the correctness of our processor by
comparing the register write back order, final memory
state, and memory writeback order of our processor with
the corresponding files generated by the correct Project 3
processor. Our processor passes this verification for all

1A. Abel, “Automatic Generation of Models of
Microarchitectures,” Ph.D dissertation, Saarland,
Germany, 2020.

provided test files on all compiler optimizations flags as
well as on test files we created to test certain behaviors
(e.g. memory operations near the end of the program).

Performance Evaluation

We achieved a final clock period of 12.75 ns with
final critical paths in the Branch Stack (for branch
resolution) and Store Queue. Pipelining on these
modules is possible, but due to time constraints, we were
unable to fully implement this in our final design.

Our average CPI across all public tests with no
compiler optimizations is 1.661. This, and all further CPI
numbers in the report, was calculated by summing the
total clock cycles and dividing it by the total instructions
retired in all programs.

Summarized Parameters for Our Final Submission

[See Appendix A]
​ These parameters were selected based on the
performance improvements we saw while testing and
their effects on synthesis results/critical path length.

CPI across test suite

[See Appendix B]
Our CPI varied based upon the particular workload

tested. The highest CPI occurred on test cases that were
predominantly branches, as Icache was frequently
invalidated. Our best CPI was on test cases with repeated
loop patterns, and independent store instructions that
could retire in parallel with other execution.

Comparison of Dcache associativity

Ways CPI Hit %

2 1.692 93.72%

4 1.661 94.65%

8 1.658 94.65%

16 1.659 94.60%

​ Past a certain associativity, the Dcache’s hit rate
does not change significantly. The parameter selected in
our final submission (4) does have a worse CPI

compared to an 8-way associative Dcache, but due to the
LRU policy used for our cache it was not feasible to
create more associative caches without affecting clock
period adversely or using different eviction policies.

Comparison of Superscalar Widths

N CPI % cycles completing N instructions

2 1.661 13.00%

3 1.645 3.56%

4 1.669 0.69%

5 1.661 0.03%

Ultimately, our processor has the best performance
on N=3, though we did not include this in our final
submission because of time constraints. At larger N
values we see that the number of cycles where the
processor takes advantage of the increased width
decreases significantly, diminishing performance gains.

Comparison of different Branch Predictor Addresses
accuracy

[See Appendix D]
From our analysis on indexing from different parts

of the branch PC for our local and Gshare PHTs, we
found the optimal PC address came from indexes [15:8].

Capacity Utilization of ROB/RS

ROB RS % full ROB cycles % full RS cycles

64 8 0.02% 13.54%

64 16 0.08% 9.82%

64 32 0.77% 9.29%

64 64 12.17% 0.01%

128 64 0% 0%

[See Appendix E]
​ We find that with our clock period, our average
ROB and RS utilization is low for most test cases,
going up to 49 on test cases with higher percentages of

load and multiply instructions. The optimal ROB/RS
size of 128/64 became a critical path, thus the smaller
64/32 was selected as the best at our clock period.

Accuracy of Branch Predictor Implementations

Predictor Scheme Overall Large tests

Tournament 0.854 0.917

Gshare 0.781 0.834

Local 0.787 0.847

On all test cases, our processor had the highest

branch predictor accuracy with the tournament style
predictor, choosing between Gshare and the local
bimodal predictor. On larger test cases such as Alexnet
and InsertionSort, the trend followed with the
tournament predictor having the best branch predictor
accuracy.

ICache Hit Rate

[See Appendix F]
​ The hit rate of the Icache had varying success rates
across the different programs. Programs with more
compact instruction footprints such as basic_malloc,
matrix_mult_rec, and copy exhibited very high hit
rates. This is expected, as their instruction working
sets are small enough to remain entirely within the
instruction cache.

DCache Hit Rate

[See Appendix G]
​ The hit rate of the Dcache is relatively high on the
test cases which run for >10000 instructions, as
expected. For test cases which perform many different
accesses to memory, like matrix_mult_rec, the
capacity of the Dcache becomes a problem. On greater
associativities, the hit rate for this test remains
approximately the same.

VI. ACKNOWLEDGEMENTS

We would like to express our heartfelt gratitude to
Professor Dreslinski and Professor Flautner, as well as
Bradley, Mustafa, Jaccob, and Jonah for their
exceptional guidance and technical support throughout
this memorable semester.

Appendix A: Full Screenshot of TUI Debugger

Parameter Value Parameter Value

Superscalar Width 2 Dcache Lines 32

RS Size 32 Dcache Line Size 8 bytes

ROB Size 64 Dcache Associativity 4-way

Physical Registers 64 Dcache Total Size 256 bytes

Branch History Register 8 bits Icache Lines 32

Store Queue Size 16 Icache Line Size 8 bytes

ALUs 3 Icache Associativity direct-mapped

Multiplier FUs 2 Icache Total Size 256 bytes

Multiplication Stages 8 Load Units 1

Store Units 1 Branch Units 1

Appendix B: Final Submission Parameters

Appendix C: Average CPI Across Our Test Suite

Appendix D: Comparison on the Accuracy of Different Branch Predictor Addresses (% Hit Rate)

 Tournament [15:8] Tournament [7:0] Tournament [19:12] Tournament [11:4]

alexnet 0.913 0.908 0.479 0.921

backtrack 0.797 0.792 0.623 0.803

basic_malloc 0.779 0.750 0.555 0.826

bfs 0.781 0.736 0.558 0.781

btest1 0.688 0.667 0.667 0.667

btest2 0.839 0.667 0.667 0.667

copy_long 0.938 0.938 0.938 0.938

copy 0.938 0.938 0.938 0.938

dft 0.820 0.796 0.791 0.836

evens_long 0.697 0.667 0.667 0.697

evens 0.697 0.697 0.697 0.697

fc_forward 0.935 0.935 0.935 0.935

fib_long 0.929 0.929 0.929 0.929

fib_rec 0.944 0.880 0.880 0.937

fib 0.929 0.929 0.929 0.929

graph 0.895 0.825 0.673 0.910

insertionsort 0.953 0.945 0.944 0.951

insertion 0.737 0.548 0.548 0.539

loop 0.967 0.967 0.967 0.967

matrix_mult_rec 0.983 0.983 0.971 0.982

mergesort 0.769 0.640 0.670 0.757

mult_no_lsq 0.938 0.938 0.938 0.938

mult_orig 0.941 0.941 0.941 0.941

outer_product 0.950 0.950 0.943 0.950

parallel 0.933 0.933 0.933 0.933

priority_queue 0.847 0.795 0.527 0.851

quicksort 0.865 0.854 0.814 0.870

sampler 0.379 0.414 0.379 0.379

saxpy 0.947 0.947 0.947 0.947

sort_search 0.882 0.892 0.892 0.882

Average: 0.854 0.827 0.774 0.843

Appendix E: Capacity Utilization of ROB/RS (ROB/RS Capacity Against Number of Cycles)

Appendix F: ICache Hit Rate (%)

Appendix G: DCache Hit Rate (%)

	EECS 470 Final Project Report

